Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Plant Commun ; : 100891, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561965

RESUMO

Plants grown under extreme environments represent unique sources for stress-resistant genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic legume shrub with evergreen broadleaves native to the semi-arid and desert regions, however, its drought tolerance mechanisms have not been well understood. Here, we report the assembly of a reference-grade genome, its evolutionary history within the legume family, and examination to its drought tolerance mechanisms. The assembled genome size was 843.07 Mb and 98.7% of the assembly was successfully anchored to the nine chromosomes of the plant. 47,611 genes were predicted to be protein-coding and 70.71% of the genome is composed of repetitive sequences dominated by transposable elements, particularly long-terminal-repeat retrotransposons (LTR-RTs). Evolutionary analyses revealed two whole-genome duplication (WGD) events shared by the genus Ammopiptanthus and other legumes at 130 and 58 million years ago (Mya), whereas no species-specific WGD was found within this genus. Further ancestral genome reconstruction indicated that the A. mongolicus genome had fewer rearrangements within the legume family, confirming it is a "relict plant". Transcriptomic analyses revealed that cuticular wax biosynthesis and transport genes were highly expressed under both normal and polyethylene glycol (PEG)-induced dehydration conditions, and significant induction of ethylene biosynthesis and signaling related genes was also observed in leaves experiencing the dehydration stress, indicating that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Consistently, ectopic expression of AmERF2, an ethylene response factor unique for A. mongolicus, resulted in marked increase of drought tolerance in transgenic Arabidopsis thaliana plants, demonstrating the application potential of A. mongolicus genes in crop improvement.

2.
Conserv Biol ; : e14264, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563105

RESUMO

Antarctica terrestrial ecosystems are facing the most threats from global climate change, which is altering plant composition greatly. These transformations may cause major reshuffling of soil community composition, including functional traits and diversity, and therefore affect ecosystem processes in Antarctica. We used high-throughput sequencing analysis to investigate soil nematodes under 3 dominant plant functional groups (lichens, mosses, and vascular plants) and bare ground in the Antarctic region. We calculated functional diversity of nematodes based on their diet, life histories, and body mass with kernel density n-dimensional hypervolumes. We also calculated taxonomic and functional beta diversity of the nematode communities based on Jaccard dissimilarity. The presence of plants had no significant effect on the taxonomic richness of nematodes but significantly increased nematode functional richness. The presence of plants also significantly decreased taxonomic beta diversity (homogenization). Only mosses and vascular plants decreased nematode functional beta diversity, which was mostly due to a decreased effect of the richness difference component. The presence of plants also increased the effect of deterministic processes potentially because environmental filtering created conditions favorable to nematodes at low trophic levels with short life histories and small body size. Increasing plant cover in the Antarctic due to climate change may lead to increased diversity of nematode species that can use the scarce resources and nematode taxonomic and functional homogenization. In a future under climate change, community restructuring in the region is possible.


Efectos de la posición taxonómica de las plantas sobre las comunidades de nemátodos del suelo en la Antártida Resumen Los ecosistemas terrestres de la Antártida enfrentan las mayores amenazas del cambio climático global, que está alterando gravemente la composición de plantas. Estas transformaciones pueden provocar una reorganización importante de la composición de la comunidad del suelo, incluyendo atributos y diversidad funcionales, y por lo tanto afectar los procesos ecosistémicos en la Antártida. Utilizamos análisis de secuenciación de alto rendimiento para investigar nemátodos del suelo debajo de tres grupos funcionales de plantas dominantes (líquenes, musgos y plantas vasculares) y de suelo desnudo en la región de la Antártida. Calculamos la diversidad funcional de nemátodos con base en su dieta, historia de vida y masa corporal mediante hipervolúmenes n­dimensionales de densidad del núcleo. También calculamos la diversidad beta taxonómica y funcional de las comunidades de nemátodos con base en la disimilitud de Jacard. La presencia de plantas no tuvo efecto significativo sobre la riqueza taxonómica de nemátodos, pero incrementó su riqueza funcional significativamente. La presencia de plantas también disminuyó la diversidad beta taxonómica (homogenización) significativamente. Solo musgos y plantas vasculares disminuyeron la diversidad beta funcional de nemátodos, lo cual se debió principalmente a un menor efecto del componente de diferencia de riqueza. La presencia de plantas también incrementó el efecto de los procesos determinísticos posiblemente porque el filtrado ambiental creó condiciones favorables para los nemátodos de niveles tróficos inferiores con historias de vida corta y tamaño corporal pequeño. El incremento de la cobertura de plantas en la Antártida debido al cambio climático puede conducir a una mayor diversidad de especies de nemátodos que pueden utilizar los escasos recursos y a la homogenización taxonómica y funcional de los nemátodos. En un futuro bajo el cambio climático, es posible la reestructuración comunitaria en la región.

3.
Sci Total Environ ; 924: 171517, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461985

RESUMO

Shrubs have developed various mechanisms for soil phosphorus utilization. Shrub encroachment caused by climate warming alters organic phosphorus mineralization capability by promoting available phosphorus absorption and mediating root exudates. However, few studies have explored how warming regulates the effects of dominant shrubs on soil organic phosphorus mineralization capability. We provide insights into warming, dominant shrub removal, and their interactive effects on the soil organic phosphorus mineralization potential in the Qinghai-Tibetan Plateau. Real-time polymerase chain reaction was used to quantify the soil microbial phosphatase genes (phoC and phoD), which can characterize the soil organic phosphate mineralization potential. We found that warming had no significant effect on the soil organic phosphate-mineralized components (total phosphate, organic phosphate, and available phosphate), genes (phoC and phoD), or enzymes (acid and alkaline phosphatases). Shrub removal negatively influenced the organic phosphate-mineralized components and genes. It significantly decreased soil organic phosphate mineralization gene copy numbers only under warming conditions. Warming increased fungal richness and buffered the effects of shrub removal on bacterial richness and gene copy numbers. However, the change in the microbial community was not the main factor affecting organic phosphate mineralization. We found only phoC copy number had significant correlation to AP. Structural equation modelling revealed that shrub removal and the interaction between warming and shrub removal had a negative direct effect on phoC copy numbers. We concluded that warming increases the negative effect of shrub removal on phosphorus mineralization potential, providing a theoretical basis for shrub encroachment on soil phosphate mineralization under warming conditions.


Assuntos
Bactérias , Fósforo , Fósforo/análise , Solo/química , Fosfatos/análise , Organofosfatos , Microbiologia do Solo
4.
Medicine (Baltimore) ; 103(10): e37374, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457575

RESUMO

The current report aimed to evaluate the characteristics of stone composition in 3637 renal and ureteral calculi patients in a single center while clarifying its relationship with sex, age, and time. Out of 3637 cases of upper urinary tract stones, stone specimens were analyzed retrospectively. There were 2373 male patients aged 6 months-87 years, with an average age of 44.73 ±â€…15.63 years, and 1264 female patients aged 4 months-87 years, with an average age of 46.84 ±â€…16.00 years. The male-female ratio was 1.88:1. Five hundred twelve patients had ureteral calculi, and 3125 had renal calculi. The SPSS software helped analyze the relationship between renal and ureteral calculi composition and sex, age, and time. Stone composition demonstrated 2205 cases of calcium oxalate stones (60.6%), 518 carbonate apatite (14.2%), 386 uric acids (10.6%), 232 magnesium ammonium phosphate (6.4%), 117 calcium phosphate (3.2%), 76 cystine (2.1%), 47 sodium urate (1.3%), 31 others (0.9%), and 25 ammonium urate (0.7%) cases. The overall male-to-female sex ratio was 1.88:1. Stones in the upper urinary tract were significantly more frequent in men than in women between the ages of 31 and 60. However, such stones were significantly more frequent in women than men over 80 (P < .05). Cystine, Sodium urate, Carbonated apatite, and uric acid indicated significant differences between different age categories (all P < .001). Stone composition analyses revealed that the frequency of calcium oxalate calculi has increased annually, while cystine and carbonated apatite incidences have dropped annually over the past decade. The components of renal and ureteral calculi vary significantly based on age and sex, with calcium oxalate calculi being more frequent in men while magnesium ammonium phosphate stones are more frequent in female patients. The age between 31 and 60 years is the most prevalent for renal and ureteral calculi in men and women.


Assuntos
Cálculos Renais , Cálculos Ureterais , Cálculos Urinários , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Cálculos Ureterais/epidemiologia , Estruvita , Oxalato de Cálcio , Cistina/análise , Estudos Retrospectivos , Ácido Úrico , Fosfatos , Cálculos Urinários/epidemiologia , Cálculos Renais/epidemiologia , Apatitas , China/epidemiologia
5.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418607

RESUMO

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Plant Commun ; 5(3): 100787, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38158655

RESUMO

A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.


Assuntos
Fatores de Despolimerização de Actina , Actinas , Raízes de Plantas , Concentração de Íons de Hidrogênio
7.
Plant Cell ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37941457

RESUMO

Double fertilization in many flowering plants (angiosperms) often occurs during the hot summer season, but the mechanisms that enable angiosperms to adapt specifically to high temperatures are largely unknown. The actin cytoskeleton is essential for pollen germination and the polarized growth of pollen tubes, yet how this process responds to high temperatures remains unclear. Here, we reveal that the high thermal stability of 11 Arabidopsis (Arabidopsis thaliana) actin-depolymerizing factors (ADFs) is significantly different: ADFs that specifically accumulate in tip-growing cells (pollen and root hairs) exhibit high thermal stability. Through ancestral protein reconstruction, we found that subclass II ADFs (expressed specifically in pollen) have undergone a dynamic wave-like evolution of the retention, loss, and regeneration of thermostable sites. Additionally, the sites of AtADF7 with high thermal stability are conserved in ADFs specific to angiosperm pollen. Moreover, the high thermal stability of ADFs is required to regulate actin dynamics and turnover at high temperatures to promote pollen germination. Collectively, these findings suggest strategies for the adaptation of sexual reproduction to high temperature in angiosperms at the cell biology level.

8.
Cell Rep ; 42(11): 113353, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007687

RESUMO

Pollen tube integrity is required for achieving double fertilization in angiosperms. The rapid alkalinization factor4/19-ANXUR1/2-Buddha's paper seal 1/2 (RALF4/19-ANX1/2-BUPS1/2)-complex-mediated signaling pathway is critical to maintain pollen tube integrity, but the underlying mechanisms regulating the polar localization and distribution of these complex members at the pollen tube tip remain unclear. Here, we find that COBRA-like protein 11 (COBL11) loss-of-function mutants display a low pollen germination ratio, premature pollen tube burst, and seed abortion in Arabidopsis. COBL11 could interact with RALF4/19, ANX1/2, and BUPS1/2, and COBL11 functional deficiency could result in the disrupted distribution of RALF4 and ANX1, altered cell wall composition, and decreased levels of reactive oxygen species in pollen tubes. In conclusion, COBL11 is a regulator of pollen tube integrity during polar growth, which is conducted by a direct interaction that ensures the correct localization and polar distribution of RALF4 and ANX1 at the pollen tube tip.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais , Fertilização
9.
Addict Biol ; 28(10): e13311, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753568

RESUMO

Over the past few years, there has been increasing evidence highlighting the strong connection between gut microbiota and overall well-being of the host. This has led to a renewed emphasis on studying and addressing substance use disorder from the perspective of brain-gut axis. Previous studies have suggested that alcohol, food, and cigarette addictions are strongly linked to gut microbiota and faecal microbiota transplantation or the use of probiotics achieved significant efficacy. Unfortunately, little is known about the relationship between drug abuse and gut microbiota. This paper aims to reveal the potential correlation between gut microbiota and drug abuse and to develop an accurate identification model for drug-related faeces samples by machine learning. Faecal samples were collected from 476 participants from three regions in China (Shanghai, Yunnan, and Shandong). Their gut microbiota information was obtained using 16S rRNA gene sequencing, and a substance use disorder identification model was developed by machine learning. Analysis revealed a lower diversity and a more homogeneous gut microbiota community structure among participants with substance use disorder. Bacteroides, Prevotella_9, Faecalibacterium, and Blautia were identified as important biomarkers associated with substance use disorder. The function prediction analysis revealed that the citrate and reductive citrate cycles were significantly upregulated in the substance use disorder group, while the shikimate pathway was downregulated. In addition, the machine learning model could distinguish faecal samples between substance users and nonsubstance users with an AUC = 0.9, indicating its potential use in predicting and screening individuals with substance use disorder within the community in the future.


Assuntos
Microbioma Gastrointestinal , Transtornos Relacionados ao Uso de Substâncias , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Genes de RNAr , China , Citratos
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446090

RESUMO

TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Sci Total Environ ; 894: 165074, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353010

RESUMO

It is well established that climate warming has become a growing issue globally, posing a threat to native ecosystems. Alpine ecosystems, such as meadows of the Qinghai-Tibet Plateau, are expected to be particularly sensitive to warming given current temperature constraints. While many studies have explored the effects of warming on aboveground ecosystems and edaphic properties, few studies have assessed the effects on soil biota. We assessed edaphic, plant, microbial and nematode responses to warming in a long-term (8 year) multilevel warming experiment and applied piecewise structural equation modelling to reveal how warming affected nematode communities directly and indirectly via biotic and abiotic factors. We found that (1) warming had a significant effect on nematode community composition, which was mainly due to direct warming effects on herbivores and omnivore-predatory nematode composition; (2) warming affected nematode richness mainly through effects on bacterial richness, with a strong negative relationship between bacterial richness and bacterivore richness as well as bacterivore richness and omnivore-predatory richness; and, (3) the predominantly direct effect of warming on nematode biomass was mainly due to significant responses of omnivore-predatory biomass. Our study provides insight into the effects of long-term warming on nematode communities and highlights the contrasting responses of composition, diversity and biomass to warming. It contributes to forecasting warming effects on the structure of soil food webs and ecosystem functioning on the Qinghai-Tibet plateau in the future.


Assuntos
Ecossistema , Nematoides , Animais , Biomassa , Tibet , Solo/química , Pradaria
13.
Front Microbiol ; 14: 1118789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125161

RESUMO

Soil organisms are abundant, phylogenetically and functionally diverse, and interact to catalyse and regulate critical soil processes. Understanding what structures belowground communities is therefore fundamental to gaining insight into ecosystem functioning. Dominant plants have been shown to influence belowground communities both directly and indirectly through changes in abiotic and biotic factors. In a field study, we used piecewise structural equation modelling to disentangle and compare the effects of a dominant allelopathic plant, Ligularia virgaurea, and a dominant facilitative plant, Dasiphora fruticosa, on understory plant, soil microbial and nematode community composition in an alpine meadow on the Tibetan plateau. Dasiphora fruticosa was associated with changes in edaphic variables (total nitrogen, soil organic carbon, pH and ammonium), understory plant and soil bacterial communities, whereas Ligularia virguarea was associated with increased soil ammonium content and soil fungal richness relative to dominant plant-free control plots. Moreover, nematode richness was significantly greater under D. fruticosa, with no change in nematode community composition. By contrast, nematode richness under Ligularia virgaurea was similar to that of dominant plant-free control plots, but nematode community composition differed from the control. The effects of both plants were predominantly direct rather than mediated by indirect pathways despite the observed effects on understory plant communities, soil properties and microbial assemblages. Our results highlight the importance of plants in determining soil communities and provide new insight to disentangle the complex above- and belowground linkages.

14.
Front Microbiol ; 14: 1130321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032907

RESUMO

In Antarctic terrestrial ecosystems, dominant plant species (grasses and mosses) and soil physicochemical properties have a significant influence on soil microbial communities. However, the effects of dominant plants on bacterial antagonistic interactions in Antarctica remain unclear. We hypothesized that dominant plant species can affect bacterial antagonistic interactions directly and indirectly by inducing alterations in soil physicochemical properties and bacterial abundance. We collected soil samples from two typical dominant plant species; the Antarctic grass Deschampsia antarctica and the Antarctic moss Sanionia uncinata, as well as bulk soil sample, devoid of vegetation. We evaluated bacterial antagonistic interactions, focusing on species from the genera Actinomyces, Bacillus, and Pseudomonas. We also measured soil physicochemical properties and evaluated bacterial abundance and diversity using high-throughput sequencing. Our results suggested that Antarctic dominant plants significantly influenced bacterial antagonistic interactions compared to bulk soils. Using structural equation modelling (SEM), we compared and analyzed the direct effect of grasses and mosses on bacterial antagonistic interactions and the indirect effects through changes in edaphic properties and bacterial abundance. SEMs showed that (1) grasses and mosses had a significant direct influence on bacterial antagonistic interactions; (2) grasses had a strong influence on soil water content, pH, and abundances of Actinomyces and Pseudomonas and (3) mosses influenced bacterial antagonistic interactions by impacting abundances of Actinomyces, Bacillus, and Pseudomonas. This study highlights the role of dominant plants in modulating bacterial antagonistic interactions in Antarctic terrestrial ecosystems.

15.
J Integr Plant Biol ; 65(7): 1717-1733, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36951316

RESUMO

Pollen tube polar growth is a key physiological activity for angiosperms to complete double fertilization, which is highly dependent on the transport of polar substances mediated by secretory vesicles. The exocyst and Sec1/Munc18 (SM) proteins are involved in the regulation of the tethering and fusion of vesicles and plasma membranes, but the molecular mechanism by which they regulate pollen tube polar growth is still unclear. In this study, we found that loss of function of SEC1A, a member of the SM protein family in Arabidopsis thaliana, resulted in reducing pollen tube growth and a significant increase in pollen tube width. SEC1A was diffusely distributed in the pollen tube cytoplasm, and was more concentrated at the tip of the pollen tube. Through co-immunoprecipitation-mass spectrometry screening, protein interaction analysis and in vivo microscopy, we found that SEC1A interacted with the exocyst subunit SEC6, and they mutually affected the distribution and secretion rate at the tip of the pollen tube. Meanwhile, the functional loss of SEC1A and SEC6 significantly affected the distribution of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex member SYP125 at the tip of the pollen tube, and led to the disorder of pollen tube cell wall components. Genetic analysis revealed that the pollen tube-related phenotype of the sec1a sec6 double mutant was significantly enhanced compared with their respective single mutants. Therefore, we speculated that SEC1A and SEC6 cooperatively regulate the fusion of secretory vesicles and plasma membranes in pollen tubes, thereby affecting the length and the width of pollen tubes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Membrana Celular/metabolismo , Tubo Polínico/metabolismo
16.
Front Plant Sci ; 14: 1117903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938009

RESUMO

Biodiversity is essential for the provision of multiple ecosystem functions simultaneously (ecosystem multifunctionality EMF). Yet, it remains unclear whether and how dominant plant species impact EMF. Here, we aimed at disentangling the direct from indirect above- and belowground pathways by which dominant plant species influence EMF. We evaluated the effects of two dominant plant species (Dasiphora fruticosa, and the toxic perennial plant Ligularia virgaurea) with expected positive and negative impacts on the abiotic environment (soil water content and pH), surrounding biological communities (plant and nematode richness, biomass, and abundance in the vicinity), and on the EMF of alpine meadows, respectively. We found that the two dominant plants enhanced EMF, with a positive effect of L. virgaurea on EMF greater than that of D. fruticosa. We also observed that dominant plants impacted on EMF through changes in soil water content and pH (indirect abiotic effects), but not through changes in biodiversity of surrounding plants and nematodes (indirect biotic pathway). Our study suggests that dominant plants may play an important role in promoting EMF, thus expanding the pervasive mass-ratio hypothesis originally framed for individual functions, and could mitigate the negative impacts of vegetation changes on EMF in the alpine meadows.

17.
Glob Chang Biol ; 29(10): 2746-2758, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794472

RESUMO

Land use and climate change alter biodiversity patterns and ecosystem functioning worldwide. Land abandonment with consequent shrub encroachment and changes in precipitation gradients are known factors in global change. Yet, the consequences of interactions between these factors on the functional diversity of belowground communities remain insufficiently explored. Here, we investigated the dominant shrub effects on the functional diversity of soil nematode communities along a precipitation gradient on the Qinghai-Tibet Plateau. We collected three functional traits (life-history C-P value, body mass, and diet) and calculated the functional alpha and beta diversity of nematode communities using kernel density n-dimensional hypervolumes. We found that shrubs did not significantly alter the functional richness and dispersion, but significantly decreased the functional beta diversity of nematode communities in a pattern of functional homogenization. Shrubs benefited nematodes with longer life-history, larger body mass, and higher trophic levels. Moreover, the shrub effects on the functional diversity of nematodes depended strongly on precipitation. Increasing precipitation reversed the effects shrubs have on the functional richness and dispersion from negative to positive but amplified the negative effects shrubs have on functional beta diversity of nematodes. Benefactor shrubs had stronger effects on the functional alpha and beta diversity of nematodes than allelopathic shrubs along a precipitation gradient. A piecewise structural equation model showed that shrubs and its interactions with precipitation indirectly increased the functional richness and dispersion through plant biomass and soil total nitrogen, whereas it directly decreased the functional beta diversity. Our study reveals the expected changes in soil nematode functional diversity following shrub encroachment and precipitation, advancing our understanding of global climate change on nematode communities on the Qinghai-Tibet Plateau.


Assuntos
Ecossistema , Nematoides , Animais , Tibet , Biomassa , Solo/química
18.
Sci Rep ; 13(1): 2799, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797352

RESUMO

To explore the contributions of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana, two plastidial ω-3 desaturase genes (CbFAD7, CbFAD8) were cloned and verified in an Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 desaturase gene (CbFAD3). Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in suspension-cultured cells. Low temperatures resulted in significant increases in trienoic fatty acids (TAs), corresponding to the cooperation of CbFAD3 and CbFAD8 in cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the cold induction of CbFAD8 in the two systems were increased with decreasing temperature and independently contributed to TAs accumulation at subfreezing temperature. A series of experiments revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of ω-3 CbFAD genes in both C. bungeana cells and leaves, while the phytohormone regulation in leaves was complex with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contributions of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.


Assuntos
Arabidopsis , Brassicaceae , Temperatura , Reguladores de Crescimento de Plantas/metabolismo , Brassicaceae/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas
19.
BMC Urol ; 23(1): 2, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609283

RESUMO

OBJECTIVE: To establish a prognostic nomogram among UTUC patients who received chemotherapy. METHODS: 1195 UTUC patients who received chemotherapy were extracted from the Surveillance, Epidemiology, and End Results (SEER) database for the period between 2004 and 2015. Patients were randomly divided into a training and a validation set. Nomogram was constructed to predict 1-, 3-, and 5-year overall survival (OS) in those patients. Receiver-operating characteristic curves (ROCs), calibration plots, and Decision curve analysis (DCA) were applied to assess and compare the discrimination, accuracy, and practicability of the nomogram with 8th American Joint Committee on Cancer (AJCC) tumor node metastasis (TNM) staging system. RESULTS: Six clinical parameters were identified as independent prognostic factors for UTUC patients' OS, including age, marital status, TNM stage, and surgical methods of the primary site. The ROC curves showed a satisfactory discrimination capacity of the nomogram, with 1-, 3-, and 5-year area under curve (AUC) values of 0.789, 0.772, and 0.763 in the training set and 0.772, 0.822, and 0.814 in the validation set, respectively. Calibration curves indicated a good agreement between actual observation and nomogram prediction. ROC and DCA curves showed our nomograms exhibited larger benefits than the 8th AJCC-TNM staging system. CONCLUSIONS: A prognostic nomogram was established and validated to present individual predictions of OS among chemotherapeutic UTUC patients. This nomogram may assist clinicians in accurate survival prognostication, treatment decision-making, and design of future clinical trials.


Assuntos
Carcinoma de Células de Transição , Neoplasias Renais , Segunda Neoplasia Primária , Neoplasias Ureterais , Neoplasias da Bexiga Urinária , Sistema Urinário , Humanos , Prognóstico , Nomogramas , Estudos Retrospectivos , Neoplasias Renais/tratamento farmacológico , Neoplasias Ureterais/tratamento farmacológico , Estadiamento de Neoplasias
20.
Sci Total Environ ; 859(Pt 2): 160154, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375548

RESUMO

In alpine systems, cushion plants act as foundation species by ameliorating local environmental conditions. Empirical studies indicate that contrasting phenotypes of alpine cushion species have different effects on understory plant species, either facilitative or competitive. Furthermore, dependent species within each community type might also exhibit different responses to each cushion phenotype, which can be clustered into several "response groups". Additionally, these species-groups specific responses to alpine cushion species phenotypes could alter community assembly. However, very few studies have assessed responses of dependent communities at species-group levels, in particular for both above- and below-ground communities. Here, we selected a loose and a tight phenotype of the alpine cushion species Thylacospermum caespitosum in two sites of northwest China, and use the relative intensity of interactions index to quantify cushion plant effects on subordinate communities of plants and soil fungi and bacteria. We assessed variations in responses of both above- and below-ground organisms to cushion plant effects at species-group level. Species-group level analyses showed that the effects of the phenotype varied among groups of each of the three community types, and different species-groups were composed by unique taxa. Additionally, we found that loose cushions enhanced stochastic processes in community assembly, for plants and soil fungi but not for soil bacteria. These variations of phenotypic effects on different species-group induced contrasting taxonomic composition between groups, and alter community assembly thereby. Our study highlights the occurrence of contrasting effects of two phenotypes of a foundation cushion plant on understory plants, soil fungi and bacteria community composition, but not necessarily on their richness. We also showed that assessing responses of understory species at the species-group level allows a more realistic and mechanistic understanding of biotic interactions both for above- and below-ground communities.


Assuntos
Caryophyllaceae , Plantas , Caryophyllaceae/fisiologia , Solo , Fenótipo , China , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA